Search results

1 – 2 of 2
Article
Publication date: 6 March 2017

Li Jun Ji, Ya Shuai Jiang, Ge Liang, Zhu Qing Liu, Jian Zhu, Kai Huang and Ai Ping Zhu

The purpose of this paper was to synthesise a thermally expandable microsphere (TEMS) with fast thermal response property and small expansion temperature range, and investigate…

Abstract

Purpose

The purpose of this paper was to synthesise a thermally expandable microsphere (TEMS) with fast thermal response property and small expansion temperature range, and investigate the factors affecting the expansion properties of the microspheres.

Design/methodology/approach

A new kind of TEMS with fast thermal response property was synthesised by suspension polymerisation method, using acrylonitrile, ethyl methacrylate and methacrylic acid as the main monomers; Mg(OH)2 as the main dispersing agent; and isooctane or n-hexane or n-pentane as the blowing agent.

Findings

The TEMS possessed the best expansion capacity when encapsulated isooctane and n-hexane were about 18.5 Wt.%. The expansion process of the TEMS could be finished by raising the temperature to 18°C from the expansion onset, much less than the reported 30-50°C. The morphology of the TEMS turned from sphere to irregular concave shape following the content increase of the blowing agent.

Originality/value

A new kind of TEMS composed of acrylonitrile/ethyl methacrylate/methacrylic acid as the polymer shell was synthesised. These TEMS showed the fastest thermal response speed reported.

Details

Pigment & Resin Technology, vol. 46 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 March 2018

Wei Sun, Xiaokai Mu, Qingchao Sun, Zhiyong Sun and Xiaobang Wang

This paper aims to comprehensively achieve the requirements of high assembly precision and low cost, a precision-cost model of assembly based on three-dimensional (3D) tolerance…

Abstract

Purpose

This paper aims to comprehensively achieve the requirements of high assembly precision and low cost, a precision-cost model of assembly based on three-dimensional (3D) tolerance is established in this paper.

Design/methodology/approach

The assembly precision is related to the tolerance of parts and the deformation of matching surfaces under load. In this paper, the small displacement torsor (SDT) theory is first utilized to analyze the manufacturing tolerances of parts and the assembly deformation deviation of matching surface. In the meanwhile, the extracting method of SDT parameters is proposed and the assembly precision calculation model based on the 3D tolerance is established. Second, an integrated optimization model based on the machining cost, assembly cost (mapping the deviation domain to the SDT domain) and quality loss cost is built. Finally, the practicability of the precision-cost model is verified by optimizing the horizontal machining center.

Findings

The assembly deviation has a great influence on cost fluctuation. By setting the optimization objective to maximize the assembly precision, the optimal total cost is CNY 72.77, decreasing by 16.83 per cent from the initial value, which meets economical requirements. Meanwhile, the upper bound of each processing tolerance is close to the maximum value of 0.01 mm, indicating that the load deformation can be offset by appropriately increasing the upper bound of the tolerance, but it is necessary to strictly restrict the manufacturing tolerances of lower parts in a reasonable range.

Originality/value

In this paper, a 3D deviation precision-cost model of assembly is established, which can describe the assembly precision more accurately and achieve a lower cost compared with the assembly precision model based on rigid parts.

Details

Assembly Automation, vol. 38 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 2 of 2